Donorstärken in 1,2-Dichloräthan, 3. Mitt.¹

Von

V. Gutmann und U. Mayer

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Wien

Mit 1 Abbildung

(Eingegangen am 23. November 1966)

Unter Berücksichtigung des Restdonorgehaltes im Lösungsmittel wurden die Dissoziationskonstanten $K_{D\cdot \mathrm{SbCl_5}}$ neu bestimmt.

 $K_{D.\,\mathrm{SbCl}_5}$ previously reported were corrected by taking into consideration the donating impurities in 1.2-dichloroethane.

Farbindikatoren (Ind), wie p-Nitroazobenzol (NAB) und trans-Azobenzol (AB), ermöglichen eine spektrophotometrische Messung der Gleichgewichte zwischen SbCl₅ und verschiedenen Donatoren (D) in 1,2-Dichloräthan^{1, 2}.

$$Ind + SbCl_5 \rightleftharpoons Ind \cdot SbCl_5$$
 (1)

$$D + \text{SbCl}_5 = D \cdot \text{SbCl}_5 \tag{2}$$

Meßbedingungen und Absorptionseigenschaften der Indikatoren AB und NAB bzw. ihrer SbCl₅-Komplexe erfordern ein Arbeiten im Konzentrationsbereich von $c_{Ind} \sim 5 \cdot 10^{-5}$ Mol/l.

Durch geeignete Vorbehandlung wurde 1,2-Dichloräthan erhalten, das als einzige nicht-inerte Verunreinigung Wasser enthält, dessen letzte Reste nicht entfernt werden konnten. Demnach tritt zu den Gleichgewichten (1) und (2) die Konkurrenzreaktion (3) hinzu.

$$H_2O + SbCl_5 = H_2O \cdot SbCl_5$$
 (3)

¹ 2. Mitt.: V. Gutmann, E. Wychera und F. Mairinger, Mh. Chem. 97, 1265 (1966).

² V. Gutmann, A. Steininger und E. Wychera, Mh. Chem. 97, 460 (1966).

Aus der tatsächlich beobachteten Änderung von $K_{D\cdot \operatorname{SbCl}_s}$ (unkorrigiert) bei variablem SbCl₅-Angebot wurde ein mittlerer Restdonorgehalt (\simeq Wassergehalt) im Lösungsmittel von etwa 2,5 · 10⁻⁴ Mol/l und $K_{\text{H} imes 0} \cdot \operatorname{SbCl}_s \sim 5 \cdot 10^{-6}$ Mol/l (20° C) abgeschätzt.

Als Anhaltspunkte dienten Wasserbestimmungen nach K. Fischer sowie orientierende Relativmessungen, wonach Wasser hinsichtlich seiner Donorstärke zwischen Aceton und Äther einzureihen ist.

Tabelle 1. Dissoziationskonstante	K _{D·SbCl} in 1,2-Dichloräthan
bei 20° C und Donorzahle	

Donor	K_{D} . ${ m SbCl_{5}}$	$\mathfrak{p}_{\mathbf{K}}$	${\it DZ}_{ m SbCl_5}$
Tributylphosphat	$3.5 \cdot 10^{-11}$	10,5	
Trimethylphosphat	$5.2 \cdot 10^{-10}$	9,3	23,0
Tetrahydrofuran	$1.2 \cdot 10^{-7}$	6,9	~ 19.0
Tricresylphosphat	$1.6 \cdot 10^{-7}$	6,8	•
Triphenylphosphat	$1.6 \cdot 10^{-7}$	6,8	
Wasser	$5.5\cdot 10^{-6}$	5,3	18,0
Aceton	$1.4 \cdot 10^{-5}$	4,9	17,0
Äthylacetat	$1.5 \cdot 10^{-5}$	4,8	16,5
Propandiolcarbonat	$1.1 \cdot 10^{-3}$	3,0	15,1
Sulfolan	$1.2 \cdot 10^{-3}$	2,9	,
Acetonitril	$1.4 \cdot 10^{-3}$	2,8	14,1
Dimethylsulfon	$1.9 \cdot 10^{-3}$	2,7	•
Diphenylsulfon	$4.4 \cdot 10^{-3}$	2,4	
Benzonitril	$7.2 \cdot 10^{-3}$	2,1	
Azobenzol	$2 \cdot 10^{-8}$	7,7	
p-Nitroazobenzol	$6 \cdot 10^{-6}$	5,2	

Zur Durchführung der Korrekturberechnungen wurde das System NAB—SbCl₅ herangezogen, unter Verwendung früher mitgeteilter³ spektroskopischer Daten für AB, NAB, $AB \cdot \text{SbCl}_5$ und $NAB \cdot \text{SbCl}_5$.

Nach Tab. 1 sind Sulfone und Nitrile schwache Donatoren, Ketone und Carbonsäureester stärker, während Kohlensäureester eine Mittelstellung einnehmen. Äther sind stärkere Donatoren als Ketone oder Carbonsäureester, im Gegensatz zu den Ergebnissen früherer qualitativer ΔH -Messungen⁵. Wasser erscheint als ein Lösungsmittel mittlerer Donorstärke, als "Äther", dem der + I-Effekt der Alkylgruppen fehlt.

Soweit ΔH -Messungen zur Verfügung standen, konnte eine annähernd lineare Beziehung zwischen log K und den kalorimetrisch ermittelten Donorzahlen 4 $DZ_{\mathrm{SbCl}_+} \equiv --\Delta H_{D+\mathrm{SbCl}_+}$ festgestellt werden.

³ A. Steininger und V. Gutmann, Mh. Chem. **97**, 171 (1966).

⁴ V. Gutmann und E. Wychera, Inorg. Nucl. Chem. Letters 2, 257 (1966); Rev. Chim. Min., im Druck.

⁵ I. Lindqvist und M. Zackrisson, Acta Chem. Scand. 14, 453 (1960).

Zur Erfassung schwacher bzw. mittelstarker Donatoren können trans-Azoxybenzol (AOB) und Phenanthrenchinon-(9,10) (PCH) bzw. 1,9-Benzanthron-(10) (BA) verwendet werden, deren Dissoziationskonstante $K_{Ind\cdot \mathrm{SbCl_s}}$ in Tab. 2 angegeben sind.

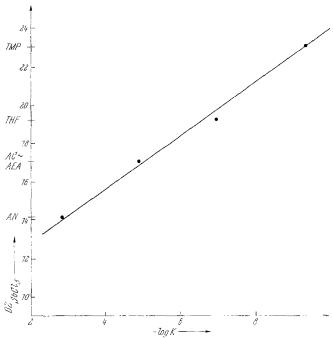


Abb. 1. Beziehung zwischen $DZ_{\mathrm{SbCl}_{5}}$ und Dissoziationskonstante K. AN= Acetonitril, AC= Aceton, AEA= Äthylacetat, THF= Tetrahydrofuran, TMP= Trimethylphosphat.

Tabelle 2. Meßlängenwellen, molare Extinktionskoeffizienten und Gleichgewichtskonstanten der SbCl5-Komplexe von AOB, BA, PCH (20°C)

Komplex	λ _{max} (nm)	^e max	$K_{Ind.\mathrm{SbCl}_5}$
$AOB \cdot \mathrm{SbCl}_5 \ BA \cdot \mathrm{SbCl}_5 \ PCH \cdot \mathrm{SbCl}_5$	405 523 510	$12\ 860$ $10\ 950$ $6\ 850$	$4 \cdot 10^{-5} \\ 4 \cdot 10^{-7} \\ 3 \cdot 10^{-4}$

Hydrolytische Einflüsse wurden nicht festgestellt.

Experimenteller Teil

Sämtliche Operationen wurden in P_2O_5 -trockener N_2 -Atmosphäre ausgeführt.

1,2-Dichloräthan (Fluka, p. a.) wurde über entwässertem CaCl₂ vorgetrocknet, filtriert und fraktioniert, die konstant siedende Fraktion (Sdp. 83° C

unkorr.) 2mal je 24 Stdn. über P_2O_5 am Rückfluß gekocht und fraktioniert: das Destillat reagiert gegen p-Dimethylaminoazobenzol sauer, daher Nachbehandlung (Rückfluß) mit CaO + CaH₂ bis zur Neutralreaktion, schließlich abermalige Fraktionierung ($\varkappa \leq 10^{-8}$ Ohm⁻¹ cm⁻¹).

Konzentriertere Lösungen von SbCl $_5$ gehorchen nicht dem Lambert—Beerschen Gesetz, so daß Eichkurven verwendet werden müssen. Die Indikatoren AB, NAB, AOB, vor allem aber ihre Komplexe, sind infolge der cis—trans-Isomerie lichtempfindlich (Ausschluß des Tageslichtes). Zur Messung gelangten die stabileren trans-Isomeren, deren Reinheit spektrophotometrisch geprüft wurde. Auch $BA \cdot \text{SbCl}_5$ und $PCH \cdot \text{SbCl}_5$ sind etwas lichtempfindlich. Die spektrophotometrischen Messungen wurden mit einem Beckman-Gerät DU G 4700 ausgeführt.

Die Komplexe $BA \cdot \mathrm{SbCl_5}$, $PCH \cdot \mathrm{SbCl_5}$, $AOB \cdot \mathrm{SbCl_5}$ wurden bei — 20° in wasserfr. $\mathrm{CCl_4}$ hergestellt. BA und PCH sind in $\mathrm{CCl_4}$ selbst schwer löslich, so daß die Umsetzungen sehr langsam verlaufen. Die Analyse erfolgt naßchemisch und spektrophotometrisch durch Regenerierung des Indikators, u. zw. durch Lösen der Komplexe in 1,2-Dichloräthan und Zusatz von überschüssigem Tetraäthylammonchlorid; dabei wird der Indikator aus dem Komplex freigesetzt. Wesentlich ist der Regenerierungsversuch, da die naßchemische Analyse auch bei weitgehend eingetretener Zersetzung theoretische Werte liefern kann.

Komplex	% Cl ber.	% Cl gef.	[≘] ber.	€gef.	Farbe
$AOB \cdot ext{SbCl}_5$ $BA \cdot ext{SbCl}_5$ $PCH \cdot ext{SbCl}_5$	33,65	35,3	13650	13 760	orangerot
	33,50	32,2	10940	11 360	dunkelviolett
	43,95	33,8	1780	1 850	bordeauxrot

 $\varepsilon_{\mathrm{ber}} = \mathrm{molare}$ Extinktionskoeffizienten der freien Indikatoren bei 324 nm (AOB), 390 nm (BA) und 415 nm (PCH).

Die Komplexe $BA \cdot \text{SbCl}_5$ und $PCH \cdot \text{SbCl}_5$ enthalten laut Analyse etwa 4% freien Indikator.